Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38478579

RESUMO

A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.


Assuntos
Ácidos Graxos , Nitratos , Ácidos Graxos/química , Nitratos/metabolismo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
2.
Nat Microbiol ; 9(2): 514-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233646

RESUMO

Metatranscriptome sequencing expanded the known diversity of the bacterial RNA virome, suggesting that additional riboviruses infecting bacterial hosts remain to be discovered. Here we employed double-stranded RNA sequencing to recover complete genome sequences of two ribovirus groups from acidic hot springs in Japan. One group, denoted hot spring riboviruses (HsRV), consists of viruses with distinct RNA-directed RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. This group forms a distinct phylum, Artimaviricota, or even kingdom within the realm Riboviria. We identified viruses encoding HsRV-like RdRPs in marine water, river sediments and salt marshes, indicating that this group is widespread beyond extreme ecosystems. The second group, denoted hot spring partiti-like viruses (HsPV), forms a distinct branch within the family Partitiviridae. The genome architectures of HsRV and HsPV and their identification in bacteria-dominated habitats suggest that these viruses infect thermoacidophilic bacteria.


Assuntos
Fontes Termais , Vírus de RNA , Fontes Termais/microbiologia , RNA de Cadeia Dupla , Ecossistema , Filogenia , Japão , Archaea/genética , Bactérias/genética , Vírus de RNA/genética
3.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37790367

RESUMO

Recent massive metatranscriptome mining substantially expanded the diversity of the bacterial RNA virome, suggesting that additional groups of riboviruses infecting bacterial hosts remain to be discovered. We employed full length double-stranded (ds) RNA sequencing for identification of riboviruses associated with microbial consortia dominated by bacteria and archaea in acidic hot springs in Japan. Whole sequences of two groups of multisegmented riboviruses genomes were obtained. One group, which we denoted hot spring riboviruses (HsRV), consists of unusual viruses with distinct RNA-dependent RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. We also identified viruses encoding HsRV-like RdRPs in moderate aquatic environments, including marine water, river sediments and salt marsh, indicating that this previously overlooked ribovirus group is not restricted to the extreme ecosystem. The HsRV-like viruses are candidates for a distinct phylum or even kingdom within the viral realm Riboviria. The second group, denoted hot spring partiti-like viruses (HsPV), is a distinct branch within the family Partitiviridae. All genome segments in both these groups of viruses display the organization typical of bacterial riboviruses, where multiple open reading frames encoding individual proteins are preceded by ribosome-binding sites. Together with the identification in bacteria-dominated habitats, this genome architecture indicates that riboviruses of these distinct groups infect thermoacidophilic bacterial hosts.

4.
mSystems ; 8(6): e0081723, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37843256

RESUMO

IMPORTANCE: The elucidation of the molecular basis of virus-host coevolutionary interactions is boosted with state-of-the-art sequencing technologies. However, the sequence-only information is often insufficient to output a conclusive argument without biochemical characterizations. We proposed a 1-day and one-pot approach to confirm the exact function of putative restriction-modification (R-M) genes that presumably mediate microbial coevolution. The experiments mainly focused on a series of putative R-M enzymes from a deep-sea virus and its host bacterium. The results quickly unveiled unambiguous substrate specificities, superior catalytic performance, and unique sequence preferences for two new restriction enzymes (capable of cleaving DNA) and two new methyltransferases (capable of modifying DNA with methyl groups). The reality of the functional R-M system reinforced a model of mutually beneficial interactions with the virus in the deep-sea microbial ecosystem. The cell culture-independent approach also holds great potential for exploring novel and biotechnologically significant R-M enzymes from microbial dark matter.


Assuntos
Bactérias , Enzimas de Restrição-Modificação do DNA , Interações entre Hospedeiro e Microrganismos , Vírus , DNA , Enzimas de Restrição do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Ecossistema , Metiltransferases , Oceanos e Mares , Bactérias/genética , Bactérias/virologia , Vírus/genética , Interações entre Hospedeiro e Microrganismos/genética
5.
Case Rep Obstet Gynecol ; 2023: 3138683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766911

RESUMO

The patient was 66 years old, had three pregnancies and two deliveries, and was menopausal at the age of 51. She had irregular bleeding and was found to have a chicken-egg-sized uterus and a thickened endometrium (23 mm). She underwent laparoscopic surgery for uterine endometrial cancer (endometrioid carcinoma G1, stage IB). Laparoscopic simple hysterectomy, bilateral adnexectomy, pelvic lymph node dissection, para-aortic lymph node dissection, and partial omentectomy were performed using the transperitoneal approach (TPA). The patient was obese, with a height of 148 cm, a weight of 68 kg, and a body mass index of 31 kg/m2. She had a large amount of visceral fat, which made it difficult to expand the surgical field during para-aortic lymph node dissection. A laparoscopic fan retractor (EndoRetract II, Medtronic) was used to lift the intestinal tracts and expand the field of view. It broke the fat around the left kidney, and the exposed left ureter was heat-damaged using a vessel sealing device (LigaSure, Medtronic). Postoperatively, a left ureteral stent was placed, and continuous urine draining into the retroperitoneum was performed. To prevent injury to the left ureter, the left ovarian vein branching from the left renal vein should be exposed as a landmark before the left ureter running parallel to it is isolated. It is essential that the fat around the left kidney is not broken during this operation. The left iliopsoas muscle should be exposed, and using this as a base, the left ovarian vein, left ureter, and left perirenal fat should be compressed and moved to the left side using a fan retractor to ensure a safe operation.

6.
Sci Adv ; 9(34): eadg8364, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611098

RESUMO

Phagocytosis is one of the methods used to acquire symbiotic bacteria to establish intracellular symbiosis. A deep-sea mussel, Bathymodiolus japonicus, acquires its symbiont from the environment by phagocytosis of gill epithelial cells and receives nutrients from them. However, the manner by which mussels retain the symbiont without phagosome digestion remains unknown. Here, we show that controlling the mechanistic target of rapamycin complex 1 (mTORC1) in mussels leads to retaining symbionts in gill cells. The symbiont is essential for the host mussel nutrition; however, depleting the symbiont's energy source triggers the phagosome digestion of symbionts. Meanwhile, the inhibition of mTORC1 by rapamycin prevented the digestion of the resident symbionts and of the engulfed exogenous dead symbionts in gill cells. This indicates that mTORC1 promotes phagosome digestion of symbionts under reduced nutrient supply from the symbiont. The regulation mechanism of phagosome digestion by mTORC1 through nutrient signaling with symbionts is key for maintaining animal-microbe intracellular nutritional symbiosis.


Assuntos
Bivalves , Simbiose , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Fagossomos , Bactérias , Digestão
7.
Case Rep Obstet Gynecol ; 2023: 5071080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638335

RESUMO

Objective: To identify surgical manipulations that caused ureter injury during total laparoscopic hysterectomy (TLH) and evaluate the surgical manipulations to identify ways to prevent such injury. Patients and Methods. This single-center, cross-sectional study included 1135 cases of TLH performed for benign diseases from January 2009 to December 2021. Seven cases (0.6%) that needed ureteral stent placement intra- or postoperatively for ureter injury were included. We identified the surgical manipulations that caused ureter injury from surgical videos. Results: Two cases had adhesions around the bladder pillar, and the ureter sustained a thermal injury during the cardinal ligament transection. One case had severe endometriosis, and the ureter was bluntly damaged when the adhesion was released. In one case, the ureter was thermally damaged during bipolar hemostasis for uterine artery bleeding. In two cases, the obliterated umbilical artery was mistaken for the ureter, and the real ureter was injured. In one case, ureteral peristalsis was inhibited by a pelvic abscess caused by postoperative infection. Conclusion: To prevent ureter injury during TLH, the ureter should be isolated in case of severe adhesion. Moreover, the following could be considered: (1) expand Okabayashi's pararectal space lateral to the uterosacral ligament, (2) perform dissection sharply using a monopolar or scissors forceps when releasing adhesion, (3) clarify the anatomy around the ureter for cases needing hemostasis, (4) repeatedly confirm the ureter with its peristalsis even after its isolation, (5) for severe adhesion cases, reduce infection risk by drain placement and administering antibiotics, and (6) use a delineator cup.

8.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37331792

RESUMO

Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851| |m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin. The content of mole-cular hydrogen (H2) was low throughout core samples, but markedly increased at specific depths that were close to potential faults predicted by logging-while-drilling ana-lyses. Based on isotopic systematics, H2 appeared to have been abundantly produced via a low-temperature interaction between pore water and the fresh surface of crushed rock induced by earthquakes. Subseafloor microbial cell density remained constant at approximately 105| |cells| |mL-1. Amplicon sequences revealed that predominant members at the phylum level were common throughout the units tested, which also included members frequently found in anoxic subseafloor sediments. Metabolic potential assays using radioactive isotopes as tracers revealed homoacetogenic activity in H2-enriched core samples collected near the fault. Furthermore, homoacetogenic bacteria, including Acetobacterium carbinolicum, were isolated from similar samples. Therefore, post-earthquake subseafloor microbial communities in the Japan Trench accretionary prism appear to be episodically dominated by homoacetogenic populations and potentially function due to the earthquake-induced low-temperature generation of H2. These post-earthquake microbial communities may eventually return to the steady-state communities dominated by oligotrophic heterotrophs and hydrogenotrophic and methylotrophic methanogens that are dependent on refractory organic matter in the sediment.


Assuntos
Terremotos , Expedições , Sedimentos Geológicos/microbiologia , Japão , Metano/metabolismo , Água
9.
Sci Adv ; 9(25): eadd3584, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343099

RESUMO

Foraminifera, the most ancient known calcium carbonate-producing eukaryotes, are crucial players in global biogeochemical cycles and well-used environmental indicators in biogeosciences. However, little is known about their calcification mechanisms. This impedes understanding the organismal responses to ocean acidification, which alters marine calcium carbonate production, potentially leading to biogeochemical cycle changes. We conducted comparative single-cell transcriptomics and fluorescent microscopy and identified calcium ion (Ca2+) transport/secretion genes and α-carbonic anhydrases that control calcification in a foraminifer. They actively take up Ca2+ to boost mitochondrial adenosine triphosphate synthesis during calcification but need to pump excess intracellular Ca2+ to the calcification site to prevent cell death. Unique α-carbonic anhydrase genes induce the generation of bicarbonate and proton from multiple CO2 sources. These control mechanisms have evolved independently since the Precambrian to enable the development of large cells and calcification despite decreasing Ca2+ concentrations and pH in seawater. The present findings provide previously unknown insights into the calcification mechanisms and their subsequent function in enduring ocean acidification.


Assuntos
Foraminíferos , Água do Mar , Foraminíferos/genética , Foraminíferos/metabolismo , Concentração de Íons de Hidrogênio , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Dióxido de Carbono/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-36862579

RESUMO

Cells from strain GE09T, isolated from an artificially immersed nanofibrous cellulose plate in the deep sea, were Gram-stain-negative, motile, aerobic cells that could grow with cellulose as their only nutrient. Strain GE09T was placed among members of Cellvibrionaceae, in the Gammaproteobacteria, with Marinagarivorans algicola Z1T, a marine degrader of agar, as the closest relative (97.4 % similarity). The average nucleotide identity and digital DNA-DNA hybridization values between GE09T and M. algicola Z1T were 72.5 and 21.2 %, respectively. Strain GE09T degraded cellulose, xylan and pectin, but not starch, chitin and agar. The different carbohydrate-active enzymes encoded in the genomes of strain GE09T and M. algicola Z1T highlights their differences in terms of target energy sources and reflects their isolation environments. The major cellular fatty acids of strain GE09T were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c. The polar lipid profile showed phosphatidylglycerol and phosphatidylethanolamine. The major respiratory quinone was Q-8. Based on these distinct taxonomic characteristics, strain GE09T represents a new species in the genus Marinagarivorans, for which we propose the name Marinagarivorans cellulosilyticus sp. nov. (type strain GE09T=DSM 113420T=JCM 35003T).


Assuntos
Gammaproteobacteria , Noma , Humanos , Japão , Ágar , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Bactérias , Celulose
11.
Microbes Environ ; 38(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858534

RESUMO

Current information on the diversity and evolution of eukaryotic RNA viruses is biased towards host lineages, such as animals, plants, and fungi. Although protists represent the majority of eukaryotic diversity, our understanding of the protist RNA virosphere is still limited. To reveal untapped RNA viral diversity, we screened RNA viruses from 30 marine protist isolates and identified a novel RNA virus named Haloplacidia narnavirus 1 (HpNV1). A phylogenetic ana-lysis revealed that HpNV1 is a new member of the family Narnaviridae. The present study filled a gap in the distribution of narnaviruses and implies their wide distribution in Stramenopiles.


Assuntos
Vírus de RNA , Estramenópilas , Animais , Filogenia , Morte Celular , RNA
12.
ISME J ; 17(1): 12-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36151459

RESUMO

Electroautotrophic microorganisms have attracted great attention since they exhibit a new type of primary production. Here, in situ electrochemical cultivation was conducted using the naturally occurring electromotive forces at a deep-sea hydrothermal vent. The voltage and current generation originating from the resulting microbial activity was observed for 12 days of deployment, with fluctuation in response to tidal cycles. A novel bacterium belonging to the genus Thiomicrorhabdus dominated the microbial community specifically enriched on the cathode. Metagenomic analysis provided the draft genome of the bacterium and the gene repertoire indicated that the bacterium has the potential for thio-autotrophic growth, which is a typical physiological feature of the members of the genus, while the bacterium had a unique gene cluster encoding multi-heme cytochrome c proteins responsible for extracellular electron transfer. Herein, we propose this bacterium as a new species, specifically enriched during electricity generation, as 'Candidatus Thiomicrorhabdus electrophagus'. This finding suggests the natural occurrence of electrosynthetic microbial populations using the geoelectricity in deep-sea hydrothermal environments.


Assuntos
Fontes Hidrotermais , Microbiota , Fontes Hidrotermais/microbiologia , Filogenia , Metagenômica , Microbiota/genética , Bactérias , Eletricidade
13.
Microbes Environ ; 37(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922920

RESUMO

Isolated RNA viruses mainly parasitize eukaryotes. RNA viruses either expand horizontally by infecting hosts (acute type) or coexist with the host and are vertically inherited (persistent type). The significance of persistent-type RNA viruses in environmental viromes (the main hosts are expected to be microbes) was only recently reported because they had previously been overlooked in virology. In this review, we summarize the host-virus relationships of eukaryotic microbial RNA viruses. Picornavirales and Reoviridae are recognized as representative acute-type virus families, and most of the microbial viruses in Narnaviridae, Totiviridae, and Partitiviridae are categorized as representative persistent-type viruses. Acute-type viruses have only been found in aquatic environments, while persistent-type viruses are present in various environments, including aquatic environments. Moreover, persistent-type viruses are potentially widely spread in the RNA viral sequence space. This emerging evidence provides novel insights into RNA viral diversity, host-virus relationships, and their history of co-evolution.


Assuntos
Vírus de RNA , Vírus , Ecossistema , Eucariotos/genética , Genoma Viral , RNA , Vírus de RNA/genética , Vírus/genética
14.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36002304

RESUMO

RNA viruses are distributed throughout various environments, and most have recently been identified by metatranscriptome sequencing. However, due to the high nucleotide diversity of RNA viruses, it is still challenging to identify novel RNA viruses from metatranscriptome data. To overcome this issue, we created a dataset of RNA-dependent RNA polymerase (RdRp) domains that are essential for all RNA viruses belonging to Orthornavirae. Genes with RdRp domains from various RNA viruses were clustered based on amino acid sequence similarities. A multiple sequence alignment was generated for each cluster, and a hidden Markov model (HMM) profile was created when the number of sequences was greater than three. We further refined 426 HMM profiles by detecting RefSeq RNA virus sequences and subsequently combined the hit sequences with the RdRp domains. As a result, 1,182 HMM profiles were generated from 12,502 RdRp domain sequences, and the dataset was named NeoRdRp. The majority of NeoRdRp HMM profiles successfully detected RdRp domains, specifically in the UniProt dataset. Furthermore, we compared the NeoRdRp dataset with two previously reported methods for RNA virus detection using metatranscriptome sequencing data. Our methods successfully identified the majority of RNA viruses in the datasets; however, some RNA viruses were not detected, similar to the other two methods. NeoRdRp may be repeatedly improved by the addition of new RdRp sequences and is applicable as a system for detecting various RNA viruses from diverse metatranscriptome data.


Assuntos
Vírus de RNA , RNA Polimerase Dependente de RNA , Sequência de Aminoácidos , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência
15.
iScience ; 25(8): 104732, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36039358

RESUMO

Substrates for enzymatic reactions, such as cellulose and chitin, are often insoluble in water. The enzymatic degradation of these abundant organic polymers plays a dominant role in the global carbon cycle and has tremendous technological importance in the production of bio-based chemicals. In addition, biodegradation of plastics is gaining wide attention. However, despite the significance, assaying these degradation reactions remains technically challenging owing to the low reaction rate, because only the surface of the substrate is accessible to the enzymes. We developed a nanofiber-based assay for the enzymatic hydrolysis of cellulose. This assay facilitated the quantification of the enzymatic hydrolysis of <1 ng crystalline cellulose. Utilization of the assay for the functional screening of cellulolytic microorganisms revealed an unprecedented genetic diversity underlying the production of deep-sea cellulase. This study reiterates that interdisciplinary efforts, such as from nanotechnology to microbiology, are critical for solving sustainability challenges.

16.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811137

RESUMO

Anaerobic ammonium-oxidizing (anammox) bacteria are slow-growing and fastidious bacteria, and limited numbers of enrichment cultures have been established. A metagenomic ana-lysis of our 5 established anammox bacterial enrichment cultures was performed in the present study. Fourteen high-quality metagenome-assembled genomes (MAGs) were obtained, including those of 5 anammox Planctomycetota (Candidatus Brocadia, Ca. Kuenenia, Ca. Jettenia, and Ca. Scalindua), 4 Bacteroidota, and 3 Chloroflexota. Based on the gene sets of metabolic pathways involved in the degradation of polymeric substances found in Chloroflexota and Bacteroidota MAGs, they are expected to be scavengers of extracellular polymeric substances and cell debris.


Assuntos
Compostos de Amônio , Metagenoma , Compostos de Amônio/metabolismo , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Metagenômica , Oxirredução , RNA Ribossômico 16S/genética
17.
Front Microbiol ; 13: 839513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668760

RESUMO

RNA virus populations are not clonal; rather, they comprise a mutant swarm in which sequences are slightly different from the master sequence. Genetic diversity within a population (intrapopulation genetic diversity) is critical for RNA viruses to survive under environmental stresses. Disinfection has become an important practice in the control of pathogenic viruses; however, the impact of intrapopulation genetic diversity on the sensitivity of disinfection, defined as -log10 (postdisinfected infectious titer/predisinfected titer), has not been elucidated. In this study, we serially passaged populations of rhesus rotavirus. We demonstrated that populations with reduced chlorine sensitivity emerged at random and independently of chlorine exposure. Sequencing analysis revealed that compared with sensitive populations, less-sensitive ones had higher non-synonymous genetic diversity of the outer capsid protein gene, suggesting that changes in the amino acid sequences of the outer capsid protein were the main factors influencing chlorine sensitivity. No common mutations were found among less-sensitive populations, indicating that rather than specific mutations, the diversity of the outer capsid protein itself was associated with the disinfection sensitivity and that the disinfection sensitivity changed stochastically. Simulation results suggest that the disinfection sensitivity of a genetically diverse population is destabilized if cooperative viral clusters including multiple sequences are formed. These results advocate that any prevention measures leading to low intrapopulation genetic diversity are important to prevent the spread and evolution of pathogenic RNA viruses in society.

18.
ISME Commun ; 2(1): 108, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938718

RESUMO

The genus Nitratiruptor represents one of the most numerically abundant chemolithoautotrophic Campylobacterota populations in the mixing zones of habitats between hydrothermal fluids and ambient seawater in deep-sea hydrothermal environments. We isolated and characterized four novel temperate phages (NrS-2, NrS-3, NrS-4, and NrS-5) having a siphoviral morphology, infecting Nitratiruptor strains from the Hatoma Knoll hydrothermal field in the southern-Okinawa Trough, Japan, and conducted comparative genomic analyses among Nitratiruptor strains and their phages. The Nitratiruptor temperate phages shared many potential core genes (e.g., integrase, Cro, two structural proteins, lysozyme, and MazG) with each other despite their diverse morphological and genetic features. Some homologs of coding sequences (CDSs) of the temperate phages were dispersed throughout the non-prophage regions of the Nitratiruptor genomes. In addition, several regions of the phage genome sequences matched to spacer sequences within clustered regularly interspaced short palindromic repeats (CRISPR) in Nitratiruptor genomes. Moreover, a restriction-modification system found in a temperate phage affected an epigenetic feature of its host. These results strongly suggested a coevolution of temperate phages and their host genomes via the acquisition of temperate phages, the CRISPR systems, the nucleotide substitution, and the epigenetic regulation during multiple phage infections in the deep-sea environments.

19.
Appl Environ Microbiol ; 88(2): e0075821, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788070

RESUMO

The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and "Bathymodiolus" platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.


Assuntos
Methylococcaceae , Microbiota , Mytilidae , Animais , Metano/metabolismo , Methylococcaceae/genética , Methylococcaceae/metabolismo , Mytilidae/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Simbiose
20.
Sci Rep ; 11(1): 22877, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819553

RESUMO

Diatoms are one of the most prominent oceanic primary producers and are now recognized to be distributed throughout the world. They maintain their population despite predators, infections, and unfavourable environmental conditions. One of the smallest diatoms, Chaetoceros tenuissimus, can coexist with infectious viruses during blooms. To further understand this relationship, we sequenced the C. tenuissimus strain NIES-3715 genome. A gene fragment of a replication-associated gene from the infectious ssDNA virus (designated endogenous virus-like fragment, EVLF) was found to be integrated into each 41 Mb of haploid assembly. In addition, the EVLF was transcriptionally active and conserved in nine other C. tenuissimus strains from different geographical areas, although the primary structures of their proteins varied. The phylogenetic tree further suggested that the EVLF was acquired by the ancestor of C. tenuissimus. Additionally, retrotransposon genes possessing a reverse transcriptase function were more abundant in C. tenuissimus than in Thalassiosira pseudonana and Phaeodactylum tricornutum. Moreover, a target site duplication, a hallmark for long interspersed nuclear element retrotransposons, flanked the EVLF. Therefore, the EVLF was likely integrated by a retrotransposon during viral infection. The present study provides further insights into the diatom-virus evolutionary relationship.


Assuntos
Vírus de DNA/genética , DNA de Cadeia Simples/genética , Diatomáceas/genética , Evolução Molecular , Genoma , Integração Viral , Diatomáceas/virologia , Filogenia , Retroelementos , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...